Extensions 1→N→G→Q→1 with N=C2 and Q=C22×D27

Direct product G=N×Q with N=C2 and Q=C22×D27
dρLabelID
C23×D27216C2^3xD27432,227


Non-split extensions G=N.Q with N=C2 and Q=C22×D27
extensionφ:Q→Aut NdρLabelID
C2.1(C22×D27) = C2×C4×D27central extension (φ=1)216C2.1(C2^2xD27)432,44
C2.2(C22×D27) = C22×Dic27central extension (φ=1)432C2.2(C2^2xD27)432,51
C2.3(C22×D27) = C2×Dic54central stem extension (φ=1)432C2.3(C2^2xD27)432,43
C2.4(C22×D27) = C2×D108central stem extension (φ=1)216C2.4(C2^2xD27)432,45
C2.5(C22×D27) = D1085C2central stem extension (φ=1)2162C2.5(C2^2xD27)432,46
C2.6(C22×D27) = D4×D27central stem extension (φ=1)1084+C2.6(C2^2xD27)432,47
C2.7(C22×D27) = D42D27central stem extension (φ=1)2164-C2.7(C2^2xD27)432,48
C2.8(C22×D27) = Q8×D27central stem extension (φ=1)2164-C2.8(C2^2xD27)432,49
C2.9(C22×D27) = Q83D27central stem extension (φ=1)2164+C2.9(C2^2xD27)432,50
C2.10(C22×D27) = C2×C27⋊D4central stem extension (φ=1)216C2.10(C2^2xD27)432,52

׿
×
𝔽